Defectoscopie cu ultrasunete a metalelor

Previzualizare proiect:

Cuprins proiect:

1. Generalitati 1
1.1. Scop 4
1.2. Domeniu de apicare 4
1.3. Aparate si echipamente folosite in controlul nedistructiv cu ultrasunete 5
1.3.1. Etaloane 5
1.3.2. Aparate ultrasonice 6
1.3.3. Palpatoare 9
1.3.3.1. Tipuri de palpatoare 10
1.3.4. Subtanta de ungere 11
1.3.4.1. Tipuri de substante de ungere 11
2. Pricipiul metodei cu ultasunete11
2.1. Marimi ce descriu oscilatia12
2.2. Unde13
2.3. Fenomene de unda13
2.4. Tipuri de unde14
2.5. Tehnica cu impuls reflectat, incidenta normala15
2.6. Ecouri multiple16
2.7. Masurare cu deplasare a impulsului 18
2.8. Metoda cu ecouri multiple19
3. Informatii specifice necesare inaintea examinarii20
3.1. Cerinte pentru echipamentul de examinare20
3.2. Parametrii palpatoarelor20
3.3. Unghiul de incidenta21
3.4. Adaptarea palpatoarelor la suprafate de explorare curbe21
4. Reglarea domeniului si sensibilitatii22
4.1. Generalitati22
4.2. Niveluri de referinta22
4.3. Niveluri de evaluare23
4.4. Corectie de transfer23
4.5. Raport semnal/zgomot23
4.6. Niveluri de examinare24
5. Tehnici de examinare25
5.1. Generalitati25
5.2. Localizarea indicatiilor25
5.3. Evaluarea indicatiilor26
5.3.1. Amplitudinea maxima a ecoului, lungimea indicatiei, resctiv inaltimea indicatiei26
5.3.2. Caracterizarea imperfectiunilor26
5.4. Niveluri de acceptare26
5.5. Caracterizarea indicatiilor27
5.6. Raport de examinare28
5.6.1. Generalitati28
5.6.2. ANEXA 130
6. Concluzii finale29
7. Bibliografie29
8. Netografie29

Extras din proiect:

1. GENERALITatI

Dintre vibratiile sonore care ies din limitele de audibilitate ale urechii omenesti, de un mare interes, din punct de vedere practic, sunt ultrasunetele, adica sunetele a caror frecventa este mai mare de 20 000 Hz.

Orientarea liliecilor, spre exemplu, se bazeaza pe faptul ca acestia emit semnale ultrasonore scurte de frecvente intre 30 - 60 kHz. Liliacul in zbor emite in medie cca. 30 semnale pe secunda. O parte din acestea sunt receptionate de urechile mari ale liliacului sub forma de semnale ecou, dupa un timp, cu atat mai scurt cu cat obstacolul este mai aproape. Pe masura apropierii de obstacol liliacul emite din ce in ce mai multe semnale intr-o secunda ajungand ca de exemplu la un metru de obstacol sa emita pana la 60 semnale pe secunda. Aceasta permite liliacului sa simta precis pozitia sa fata de obstacole.

Importanta practica a ultrasunetelor este legata de lungimea de unda mica a acestora. Din aceasta cauza, de exemplu, ultrasunetele pot fi emise si se propaga ca si razele de lumina sub forma de fascicule, spre deosebire de sunetele obisnuite care se imprastie in toate directiile. Astfel se constata experimental ca daca lungimea undei emise este mai mica decat dimensiunile liniare ale sursei unda se va propaga in linie dreapta sub forma de fascicul. in afara de aceasta, datorita lungimii de unda mici, fenomenul de difractie (ocolirea obstacolelor) nu apare decat pentru obstacolele de dimensiuni foarte mici in timp ce sunetele obisnuite ocolesc practic aproape orice obstacol intalnit in cale.

Ultrasunetele sufera reflexia si refractia la suprafata de separare a doua medii diferite la fel ca undele luminoase. Folosind acest fenomen au fost construite oglinzi concave sau lentile speciale care sa concentreze intr-un punct fascicule de ultrasunete.

Deoarece intensitatea undelor sonore este proportionala cu patratul frecventei, energia transportata de ultrasunete este mult mai mare decat energia sunetelor de aceeasi amplitudine. Pe de alta parte in cazul ultrasunetelor fenomenul de absorbtie care apare la propagarea tuturor oscilatiilor elastice devine foarte important. Intensitatea undei elastice scade cu distanta de la sursa dupa o lege exponentiala I = I0 e-kr. Se poate arata atat teoretic cat si experimental ca k depinde atat de caracteristicile mediului (densitate, vascozitate, caldura specifica etc.) cat si de frecventa undei care se propaga crescand cu patratul frecventei. Din aceasta cauza practic nu putem obtine propagarea ultrasunetelor, de exemplu in aer, la o distanta mai mare de un kilometru. Mai mult, un ultrasunet de o frecventa de cca. 3000 kHz este practic absorbit complet, la o distanta de cca. 0,6 cm. in lichide coeficientul de absorbtie este de 2-3 ordine de marime mai mic decat in aer, iar in solide si mai mic, intensitatea ultrasunetelor fiind mult mai putin atenuata.

Un fenomen interesant care apare la propagarea ultrasunetelor in lichide este fenomenul de cavitatie care consta in aparitia unor bule care se ridica la suprafata si se sparg. Aceasta se explica prin faptul ca dilatarile si comprimarile extrem de rapide care se succed in lichid duc la aparitia unor mari tensiuni in anumite zone care fac sa se "rupa" moleculele de lichid. Astfel iau nastere bulele care contin vaporii si gazele dizolvate in lichid. Bulele mici se contopesc in bule mai mari care incep sa vibreze si apoi se sparg dand nastere unor presiuni locale foarte mari care se manifesta sub forma de socuri hidraulice in volume foarte mici. Deteriorarea paletelor turbinelor si a elicelor vapoarelor se explica prin fenomenul de cavitatie produs de ultrasunetele generate de vibratiilor masinilor.

inainte de a discuta cateva din aplicatiile practice ale ultrasunetelor sa vedem cum pot fi produse. Vom trece peste procedeele mecanice (fluier ultrasonor, sirena ultrasonora) si termice (cu ajutorul vibratiilor unui arc electric) deoarece ultrasunetele produse de acestea au in genere amplitudini mici si sunt mai putin importante practic. Sa analizam generatorul piezoelectric. Efectul piezoelectric consta in faptul ca supunand un cristal la deformari de tractiune sau comprimare dupa anumite directii, pe fetele sale apar sarcini electrice egale de semne contrare care isi schimba rolul daca inlocuim tractiunea prin comprimare si invers. Exista si efectul piezoelectric invers sau electrostrictiunea, pe care se bazeaza producerea ultrasunetelor, care consta in dilatari si comprimari succesive ale cristalului sub actiunea unui camp electric alternativ.

Partea esentiala a generatorului consta dintr-o lama piezoelectrica de obicei de cuart pe fetele careia sunt aplicati doi electrozi, sub forma unor straturi subtiri metalice, legati la o sursa de tensiune alternativa. Sub actiunea campului electric alternativ lama incepe sa vibreze cu o frecventa egala cu cea a tensiunii aplicate. Vibratiile lamei sunt transmise in mediul inconjurator sub forma de ultrasunete. Cu astfel de generatori se poate ajunge pana la frecvente de cca. 150 000 kHz si la intensitati ale radiatiei ultrasonore de la cateva zeci de wati pe cm2 pana la cateva sute de wati pe cm2.

Se pot produce ultrasunete si cu ajutorul efectului magnetostrictiv care consta in deformarea corpurilor feromagnetice (fier, nichel, cobalt) sub actiunea unui camp magnetic. Introducand o bara dintr-un astfel de material (Ni) intr-un camp magnetic, paralel cu lungimea ei (produs de exemplu de o bobina in care e introdusa bara), aceasta se scurteaza. Cand campul magnetic variaza periodic (curentul care strabate bobina este periodic) bara se va scurta periodic. in cazul unor frecvente mari ale campului alternativ vibratiile capetelor barei dau nastere la unde ultrasonore. Pentru a obtine amplitudini mari se aleg dimensiunile barei astfel ca sa avem rezonanta intre vibratiile elastice proprii si frecventa curentului alternativ excitator. Generatorul magnetostrictiv este avantajos pentru producerea ultrasunetelor de frecventa joasa (de la 20 - 60 kHz) si energii considerabile.

Datorita frecventei mari si a energiei mari pe care o transporta, ultrasunetele produc o serie de efecte fizico-chimice dintre care mentionam : distrugerea starilor labile de echilibru; incalzirea mediului; formarea de sisteme disperse (emulsii si suspensii) si distrugerea de astfel de sisteme (coagulari); influentarea potentialelor electrochimice si a pasivitatii metalelor; voalarea placilor fotografice; cresterea vitezei unor reactii chimice; explozia substantelor putin stabile (de exemplu iodura de azot) etc.

Proprietatile ultrasunetelor permit folosirea lor intr-o mare varietate de aplicatii practice.

Ultrasunetele produc incalzirea si redistribuirea substantei din celulele vii ceea ce duce la folosirea lor in terapeutica (incalzirea anumitor tesuturi si masaje adanci) precum si la conservarea alimentelor (prin folosirea unor ultrasunete de frecventa si intensitate potrivita care distrug microorganismele).

O alta aplicatie a ultrasunetelor este legata de masurarea adancimii marilor. in esenta procedeul este acelasi ca si in cazul folosirii sunetelor obisnuite, prezentand insa avantajul fasciculelor dirijate. De asemenea se pot produce semnale foarte scurte ceea ce mareste precizia masurarii intervalului de timp dintre producerea semnalului direct si inregistrarea celui reflectat.

Ultrasunetele se folosesc in diferite procese tehnologice cum ar fi : spalarea, curatarea, uscarea sau sudarea unor corpuri si de asemenea pentru prelucrarea unor piese. in principiu, prelucrarea cu ajutorul ultrasunetelor consta in urmatoarele : se introduce piesa (sau portiunea de piesa) care trebuie prelucrata intr-un lichid in care se gasesc in suspensie particule de praf

Bibliografie:

. Bibliografie

ISIM Timisoara. ,,Curs de ultrasunete nivel II", ", Editura Sudura Timisoara 2004.

. Netografie

http://www.solutiicnd.ro/control_us.asp?ParentID=7&ID=7

www.iscir.ro

Descarcă proiect

Pentru a descărca acest document,
trebuie să te autentifici in contul tău.

Structură de fișiere:
  • Defectoscopie cu ultrasunete a metalelor
    • anexa 1.doc
    • cuprins.docx
    • ultrasunete proiect.docx
Alte informații:
Tipuri fișiere:
doc, docx
Diacritice:
Da
Nota:
10/10 (1 voturi)
Nr fișiere:
3 fisiere
Pagini (total):
33 pagini
Imagini extrase:
32 imagini
Nr cuvinte:
8 691 cuvinte
Nr caractere:
48 259 caractere
Marime:
804.10KB (arhivat)
Publicat de:
Anonymous A.
Nivel studiu:
Facultate
Tip document:
Proiect
Domeniu:
Fizică
Tag-uri:
metale, sunete, frecventa
Predat:
la facultate
Materie:
Fizică
Sus!