Previzualizare atestat:

Cuprins atestat:

1. Prezentare generala 4
2. Operatii
2.1 Suma 5
2.2 Produsul 5
2.3 Impartirea 7
3. Schema lui Horner 8
4. Radacina unui polinom 10
5. Relatiile lui Viete 10
6. Program Pascal 11

Extras din atestat:

Fie n?N* si a0, a1, a2, , an numere complexe, an ? 0.

Expresia:

f = a0 + a1X + a2X2 + +anXn,

se numeste polinom de gradul n cu coeficienti complescsi in variabila X, iar functia f : C - C, f (x) = a0 + a1X + a2 X2 + +anXn

se numeste functia polinomiala de gradul n asociata polinomului.

Termenul akXk se numeste monom de gradul k, iar ak se numeste coeficientul monomului.

Coeficientul an se numeste coeficientul dominant al polinomului, iar a0 se numeste termenul liber al acestuia. Exemple

1. f = 1+2X-3X3 - gradul = 3 - coeficient dominant = -3 - termenul liber = 1

2. g = X+2X5-10X10 - gradul = 10 - coeficient dominant = -10 - termenul liber = 0.

Se noteaza gradul unui polinom f cu grad f.

Fie f = a0 + a1X + a2X2 + +anXn si g= b0 + b1X + b2X2+ + bmXm doua polinoame cu coeficienti complecsi. Polinoamele sunt egale (f = g) daca si numai daca

n = m si ak = bk pentru orice k, 0 <= k <= n.

Daca doua polinoame cu coeficienti complecsi sunt egale, atunci functiile polinomiale atasate acestora sunt egale.

2. Operatii cu polinoame

1. Adunarea

Fie:

f = a0 + a1X + a2X2 + + anXn si

g= b0 + b1X + b2X2+ + bmXm

doua polinoame cu coeficienti complecsi, de gradul n, respectiv m cu n >= m. Se defineste suma polinoamelor f si g polinomul

f+g = a0 + b0 +(a1 + b1)X +(a2 + b2)X2 + +(am + bm)Xm +am+1Xm+1 + +anXn

Astfel, suma a doua polinoame se face adunand coeficientii termenilor cu acelasi grad.

Exemplu:

Fie: f = 2 + 3X + 5X2 + X3 si g = 1- X - 2X + X5.

Atunci

f + g = 3 + 2X + 3X2 + X3 + X5.

2. Inmultirea

Produsul polinoamelor f si g este polinomul:

f g =c0 + c1X + c2X2 + +cm+nXm+n,

unde coeficientii c0, c1, , cm+n sunt dati de relatiile: c0 = a0 b0 c1 = a0 b1 + a1 b0 c2 = a0 b2 + a1 b1 + a2 b0 cm+n-2 = an-2bm + an-1bm-1 + anbm-2 cm+n-1 = an-1bm + an bm-1 cm+n = an bm

In general, se poate scrie ck = ai bk-i suma facandu-se dupa toti indicii care verifica simultan conditiile 0 <= i <= n si 0 <= k-1 <= m. Exemplu

Fie : f = 2 - 3X +4X2, si g = 1 + X - X3

Atunci f g = 2 - X + X2 + 2X3 + 3X4 - 4X5

Se observa ca, daca f = a0 si g = b0 (f si g sunt polinoame de gradul zero), atunci f + g = a0 + b0 iar f g = a0b0. Astfel pot fi identificate polimoamele de gradul zero cu numerele complexe. Polinoamele de gradul 0 se mai numesc polinoame constante.

Si numarul complex 0 poate fi identificat cu un polinom. Acesta se numeste polinom nul notat chiar cu 0.

Un polinom diferit de polinomul nul se numeste polinom nenul (acesta nu inseamna ca functia polinomiala asociata acestuia nu se anuleaza).

Observatii:

a) Daca f , g ? C[X] ( multimea polinoamelor cu coeficienti complecsi) sunt polinoame nenule, atunci grad (f + g) <= max (grad f , grad g) grad (f g) = grad f + grad g.

Daca grad f ? grad g , atunci grad (f + g) = max (grad f , grad g).

b) Daca in egalitatea grad (f g) = grad f + grad g, polinomul g ar fi polinom nul, am obtine grad(0) = grad (f) + grad (0). De aceea uneori se defineste gradul polinomului nul ca fiind -?.

Download atestat

Primești atestatul în câteva minute,
cu sau fără cont

Alte informații:
Tipuri fișiere:
doc, exe, pas
Diacritice:
Nu
Nota:
9/10 (1 voturi)
Anul redactarii:
2004
Nr fișiere:
3 fisiere
Pagini (total):
28 pagini
Imagini extrase:
28 imagini
Nr cuvinte:
2 902 cuvinte
Nr caractere:
16 443 caractere
Marime:
52.07 KB (arhivat)
Nivel studiu:
Liceu
Tip document:
Atestat
Materie:
Informatica
Data publicare:
18.09.2017
Structură de fișiere:
  • MARCU.PAS
  • MARCU.EXE
  • Documentatie polinoame.doc
Predat:
Grup Şcolar Bicaz
Profil:
Real
Profesorului:
Vancea Ioan

Ai gasit ceva în neregulă cu acest document?

Te-ar putea interesa și:
2. Analiza problemei, modelare, scenarii , utilizari Analiza problemei Prin prelucrarea...
Algebra polinoamelor incomplete de mai multe nedeterminate, implementare dinamica Structuri de...
Pentru implementarea unui polinom incomplet de mai mult nedeterminate am definit o clasa poli cu...
Fie C multimea numerelor complexe. Vom considera F(N,C) multimea tuturor functiilor definite pe...
I. POLINOAME 1. Fie un inel comutativ cu element unitate. I.1 POLINOAME Def.: Se...
Sus!